
MY (MUSICAL) LIFE 
Team: Chaz Clark, Christian Hernandez, Daksh Goel, Vatsal Bhatt, Vignesh Krishnan

Team Number: sddec20-13, Email: sddec20-13@iastate.edu, Faculty Adviser & Client: Dr. Duwe

Introduction
● Have you ever been in a sad mood and listened to sad 

music despite it not helping and making you even 
sadder? Do you typically play high-tempo music 
when heading to the gym and while working out at 
the gym? If you answered yes to some of the 
questions, My (Musical) Life app will be perfect for 
you! For people who love music, this app will be 
great to use on the daily. Our app will use data from 
multiple different, possible sources (location, 
calendar, time of day, etc.) to determine which song is 
the best to pipe directly into your ears. The app will 
require little user input, and the music suggestions 
will improve as the user continues to use the app.

Intended Users and Uses
● Users
○ Anyone can use this app!
○ Dr. Duwe

● Uses
○ Anytime one wants music to automatically generate based on some 

factors 

Design Approach
● Main Functional Modules
○ Spotify, AWS Backend Functions, SQL Database (hosted by AWS), 

iOS Application (frontend), Local Storage/Device Data
● How does ths achieve overall system functionality?
○ The connection of these pieces 

Technical Details
● Functional Modules
○ Spotify
■ The team uses Spotify’s API in order to generate music for the 

users
■ Start, stop, next, and previous functionality

○ AWS Backend
■ Backend functions REST API
■ Bin selection algorithm

○ SQL Database
■ Hosted by AWS
■ Stores user data, music preferences, and bins

○ iOS Application (Frontend)
■ Sign-Up/Log-In Functionality
■ Genre selection
■ Play music
■ User Interaction

○ Local Storage/Device Data
■ API Login
■ User Settings
■ Output sensor data and permissions

● Programming Languages
○ Swift and Python

● Libraries
○ AWS Amplify
○ Starscream
○ Reachability Swift

● Development Tools and Environments
○ Xcode
○ Amazon Web ServicesTesting

● Postman
● Using real life data
● Unit and UI Testing
○ iOSSnapshotTestCase (owned by Uber)
■ Takes a screenshot of the app (references)
■ Then, after taking the screenshot, the references 

are used to ensure that the user is seeing the same 
in the app and/or simulator

Figure 4: Reference Figure 5: Failure Figure 6: Diff

Figure 9: System 
Level Diagram

Figure 3: Feature Vector Workflow

Figure 1: App Home Page

Figure 2: Sign Up 
Page

Figure 7: Testing 
Flowchart

Figure 10: Music 
player screen

Figure 11: Results 
from Bin Selection 
Algorithm with Real 
Data

Figure 8: Conceptual Sketch

Design Requirements
● Functional Requirements
○ User Data (from mobile device
■ Location
■ Schedule

○ Spotify Installed on iPhone
○ Music Recommendations
○ Mapping Sensor Inputs to Songs/Playlists

● Non-Functional Requirements
○ Security (SSL, TLS, WPA2)
■ Account Logins
■ Location Information
■ Calendar Data
■ Music Preferences

○ AWS Security
■ Database
■ Lambda Data

○ Response Time and Performance
■ Crash Rate: 1-2%
■ API Latency
■ End-to-end latency: <3 sec

○ Operating Envrionment
■ Network reception in user’s mobile device
■ iOS Device (iPhone)

● Engineering Constraints
○ Apple developer account
○ Coronavirus restrictions limiting movement
○ Must have an iPhone
○ MacOS for development
○ Developing app for both Android and iOS
○ User Buying Spotify Premium Account

mailto:sddec20-13@iastate.edu

