

sddec20-13 1

My (Musical) Life
Design Document

Team Number: sddec20-13

Adviser & Client: Dr. Henry Duwe

Team Members:

Christian Hernandez - Project Manager

Chaz Clark - iOS Developer

Daksh Goel - Backend Developer

Vignesh Krishnan - Frontend Developer

Vatsal Bhatt - Backend Developer

Team Email: sddec20-13@iastate.edu

Team Website: http://sddec20-13.sd.ece.iastate.edu/

mailto:sddec20-13@iastate.edu
http://sddec20-13.sd.ece.iastate.edu/

sddec20-13 2

Executive Summary

Development Standards & Practices Used

● Development Standards

○ Commented Code

○ Quality

○ Efficiency

○ Apple Developer Standards

○ Waterfall Design

● Practices

○ Test code regularly

○ Agile Development

● Engineering Standards

○ Quality

○ Performance

○ Safety

Summary of Requirements

● Functional requirements

○ User Data (from their mobile device)

■ Location

■ Weather (Team was not able to get to this due to time)

■ Schedule

○ Spotify Installed on iPhone

○ Music Recommendations

○ Mapping Sensor Inputs to Songs/Playlists

○ Volume Control (Team was not able to get to this due to time)

● Non-functional requirements

○ Security (SSL, TLS, WPA2)

■ Account logins

■ Location information

■ Calendar data

■ Music preferences

○ AWS Security

■ Database

■ Lambda data

○ Response time and performance

■ Crash Rate: 1-2%

■ API Latency: 1 sec

■ End-to-end app latency: <3 sec

● Engineering Constraints

○ Apple developer account

○ Coronavirus restrictions limiting movement

○ Must have an iPhone

sddec20-13 3

○ MacOS for development

○ Developing app for both Android and iOS

○ User Buying Spotify Premium Account

● Economical requirements

○ Spotify Premium Subscription

● Environmental requirements

○ Network reception in the user’s mobile device

○ iOS device (iPhone)

● Apple Design Guideline Requirements

○ Consistency

○ Feedback

○ Direct manipulation

○ User control

Applicable Courses from Iowa State University Curriculum

● S E 185 - Problem Solving in Software Engineering

● CPR E 185 - Introduction to Computer Engineering and Problem Solving I

● COM S 227 - Object-Oriented Programming

● COM S 228 - Introduction to Data Structures

● COM S 309 - Software Development Practices

● CPR E 310 - Theoretical Foundations of Computer Engineering

● COM S 311 - Introduction to the Design and Analysis of Algorithms

● S E 319 - Construction of User Interfaces

● S E 329 - Software Project Management

● S E 339 - Software Architecture and Design

● COM S 363 - Introduction to Database Management Systems

● ENGL 314 - Technical Communication

New Skills/Knowledge acquired that was not taught in courses

● Swift

● iOS Development

● Machine Learning

● Using Spotify’s API

● Amazon Web Services

sddec20-13 4

Table of Contents

1 Introduction

1.1 Acknowledgement 7

1.2 Problem and Project Statement 7

1.3 Operational Environment 7

1.4 Requirements 7

 1.4.1 Engineering Constraints and Non-Functional Requirements 8

1.5 Intended Users and Uses 9

1.6 Assumptions and Limitations 9

1.7 Expected End Product and Deliverables 10

2. Specifications and Analysis

2.1 Proposed Approach 12

 2.1.1 Sensor Inputs 14

 2.1.2 Database Design 14

 2.1.3 Onboarding Diagram 15

 2.1.4 Feature Vector Workflow 17

 2.1.5 Feedback Diagram 19

2.2 Design Analysis 19

2.3 Development Process 20

2.4 Conceptual Sketch 20

3. Statement of Work

3.1 Previous Work And Literature 23

3.2 Technology Considerations 23

3.3 Task Decomposition 24

3.4 Possible Risks And Risk Management 25

3.5 Project Proposed Milestones and Evaluation Criteria 26

3.6 Project Tracking Procedures 27

3.7 Expected Results and Validation 27

4. Project Timeline, Estimated Resources, and Challenges

4.1 Project Timeline 28

4.2 Feasibility Assessment 30

4.3 Personnel Effort Requirements 30

sddec20-13 5

4.4 Other Resource Requirements 33

4.5 Financial Requirements 34

4.6 Coronavirus Impact 34

5. Testing and Implementation

5.1 Interface Specifications 35

5.2 Hardware and Software 35

5.3 Functional Testing 35

5.4 Non-Functional Testing 36

5.5 Process 39

5.6 Results 40

6. Closing Material

6.1 Conclusion 46

6.2 References 46

Appendix I: Operation Manual 47

List of figures/tables/symbols/definitions

Figure 1: Use-Case Venn Diagram (Page 9)

Figure 2: Bin Creation Diagram (Page 13)

Figure 3: Sensor Input Table (Page 14)

Figure 4: Database Design (Page 15)

Figure 5: Revised Database Design (Page 15)

Figure 6: Onboarding Diagram (Page 16)

Figure 7: Revised Onboarding Diagram (Page 17)

Figure 8: Feature Vector Workflow (Page 18)

Figure 9: Revised Feature Vector Workflow (Page 18)

Figure 10: Feedback Diagram (Page 19)

Figure 11: Conceptual Sketch (Page 21)

Figure 12: iOS MockUp (Page 22)

Figure 13: Gantt Chart (Page 28)

Figure 14: Revised Gantt Chart (Page 29)

Figure 15: The “Show Debug Navigator” Icon (Page 36)

Figure 16: Memory Use of App (Page 37)

Figure 17: Reference Image (Page 38)

Figure 18: Failed Image (Page 38)

Figure 19: Image Differences (Page 38)

Figure 20: Testing Flowchart (Page 40)

Figure 21: UI and Unit Test Results (Page 41)

Figure 22: Bin Selection Algorithm Results (Page 42)

Figure 23: Bin Scoring for Current Feature Vector Bar Graph (Page 43)

sddec20-13 6

Figure 24: Bin Selection Algorithm Results 2 (Page 44)

Figure 25: Bin Scoring for Current Feature Vector Bar Graph 2 (Page 45)

Figure 26: Sign Up or Log In Page Results (Page 47)

Figure 27: Log In (Page 48)

Figure 28: Sign Up (Page 48)

Figure 29: Home Page (Settings Circled) (Page 48)

Figure 30: Spotify Player Page (Page 48)

Figure 31: Home Page (Spotify Player Circled) (Page 49)

Figure 32: Spotify Player Page (Page 50)

sddec20-13 7

1 Introduction

1.1 Acknowledgement

We would like to first thank Dr. Henry Duwe for meeting with us weekly and providing us with

guidance and advice as we develop our senior design project. Dr. Duwe has done an amazing job

in regards to helping us set up this project by giving us small assignments to complete each week

for him. We would also like to thank the Electronics Technology Group for providing us with a

website and a Git project. Lastly, we would like to thank the TAs and the professors (Dr. Lotfi

Ben-Othmane, Dr. Daji Qiao, and Dr. Thomas Daniels) for their guidance and help.

1.2 Problem and Project Statement

Have you ever been in a sad mood and listened to sad music despite it not helping and making

you even sadder? Do you typically play high-tempo music when heading to the gym and while

working out at the gym? Do you listen to softer, calmer music as you study for your next exam at

the library? If you answered yes to some of the questions, My (Musical) Life app will be perfect

for you! For people who love music, this app will be great to use daily.

Our app will use data from multiple different, possible sources (location, calendar, schedule,

time of day, etc.) to determine which song is the best to pipe directly into your ears. The app will

require little user input, and the music suggestions will improve as the user continues to use the

app. Overall, as long as the app is open on your phone, the app will continue to play music based

on the different sources listed above.

1.3 Operational Environment

The end product of our project is an iOS mobile application, as demanded by the client. My

(Musical) Life will be able to be installed and used by anyone owning Apple’s mobile device,

namely, iPhone. Upon installation and registration, our app will require some permissions from

the user including access to their mobile device’s location and some user data. Our app is only

supported by iPhone’s Operating System and will be not available for use in mobile devices

running Android.

1.4 Requirements

The requirements of our project are as follows:

● Functional requirements

○ User Data (from their mobile device)

■ Location

■ Weather

● Unable to get to this requirement

■ Schedule

sddec20-13 8

○ Spotify Installed on iPhone

○ Music Recommendations

○ Mapping Sensor Inputs to Songs/Playlists

○ Volume Control

■ Unable to get to this requirement

● Economical requirements

○ Spotify Premium Subscription

○ Apple Developer Account

● Environmental requirements

○ Network reception in the user’s mobile device

○ iOS device (iPhone)

● Apple Design Guideline Requirements

○ Consistency

○ Feedback

○ Direct manipulation

○ User control

1.4.1 Engineering Constraints and Non-Functional Requirements

○ Engineering Constraints

■ Apple developer account

■ Coronavirus restrictions limiting movement

■ Must have an iPhone

■ MacOS for development

■ Developing app for both Android and iOS

■ User Buying Spotify Premium Account

○ Non-functional requirements

■ Security (SSL, TLS, WPA2)

● Account logins

● Location information

● Calendar data

● Music preferences

■ AWS Security

● Database

● Lambda data

■ Response Time/Performance

● Crash Rate: 1-2%

● API Latency: 1 sec

● End-to-end app latency: <3 sec

sddec20-13 9

1.5 Intended Users and Uses

An intended user for our iOS mobile application, My (Musical) Life, will be someone who loves

to listen to music and wants to listen to their favorite music with minimal to no user input at

specific times and during specific events of their day. Our app will create personalized playlists

for each user depending on their mood, location, and schedule. Other factors including time of

the day will also play a role in creating these playlists. Weather is something that the team did

not get to, but this can be added to the app in the future. The main purpose of the app is to start

playing music on a user’s mobile device without their input, during specific times of the day

when the user would possibly be wanting to listen to music. An example use case will be a

student wanting to listen to soft and calm music while studying in the library. Our app will

determine that the user i.e., the student is in the library through the location of their mobile

device and will start playing soft and calm music in their mobile device while having five other

playlist recommendations in case the user did not like the music that is being played currently.

Pictured below is a Venn diagram consisting of all the use cases for our project.

Figure 1: Use Case Venn Diagram

1.6 Assumptions and Limitations

Assumptions:

sddec20-13 10

1. The user will have an existing account with Spotify music streaming service or will be

willing to create one for the use of the application.

2. The user will have an existing Spotify library to choose songs from, otherwise, songs

may be chosen from a random Spotify playlist for a specific mood.

3. The user will have an existing Google account or will be willing to create one for the use

of the application.

a. Originally, this was an assumption for the app. However, the user will not need a

Google account for the app anymore.

4. The user is comfortable with the private data and permissions that the application

requires to provide the most intelligent song selections. Ex. location, calendar, and

Bluetooth.

Limitations:

1. The application will only be available on iOS devices as required by the client.

2. Users with streaming services other than Spotify or local music storage will not be able to

integrate their music library.

3. Users without a Google account will not be able to use features that use personal data for

selecting songs.

a. Originally, this was a limitation for the app. However, a user will not need a

Google account for the application.

4. There will have minimal user input and songs will only be able to be played

automatically with a skip feature, not chosen specifically.

5. The user will need to allow device location permissions at all times to receive location-

based song selections in real-time.

6. The user will need to allow Bluetooth device connection permissions at all times to

receive device-based song selections in real-time.

a. Originally, this was a limitation for the app, However, a user will not always need

a Bluetooth connection.

7. The user will not be allowed to test the app everywhere if there are local restrictions due

to COVID-19

1.7 Expected End Product and Deliverables

The My (Musical) Life iOS application will be the final deliverable to our client and it will be

commercialized on the Apple App Store.

Description:

My (Musical) Life is a music streaming application that changes your music based on what you

do every day. This is a great app for listeners who love having music playing throughout the day,

almost like a soundtrack for their life! Finding the right song, playlist, or genre for a particular

activity can be difficult and time-consuming. My (Musical) Life can take the pain out of choosing

music by predicting and playing the songs you like. Powered by Spotify, My (Musical) Life will

select your favorite songs that fit your daily activities. Whether it be working out at the gym,

working in your office, studying in the library, or taking a road trip, never worry about changing

sddec20-13 11

the song again. My (Musical) Life will recommend and play music that best fits your daily

routine. Using your location, calendar, and Bluetooth connectivity data, it will select the genre of

music that best matches your mood for a specific activity. As you provide feedback on selections

made by My (Musical) Life, it will build a personalized music profile that will only play the

songs that you love.

sddec20-13 12

2. Specifications and Analysis

2.1 Proposed Approach

The proposed approach to our app is to develop an iOS application for our users to interact with.

The iOS application will then communicate to various third-party APIs. In order to play music,

our app will use Spotify’s API and stream music from there.

The application will be mapping users’ sensor data to songs and playlist. The mapping of this

data will be organized using a bin model approach where users will have bins that are built upon

the user’s sensor data and will contain songs associated with that data. To see if a bin already

exists for the user’s current situation, we will be designing AWS lambda functions to search for

appropriate bins, if none exists a new one will be created.

sddec20-13 13

Figure 2: Bin Creation Diagram

For our data storage, we plan to use a hybrid of on-device storage and AWS. The on-device

storage will store user-login, and settings. Our AWS backend will build a profile of the type of

music the users listen to, which will help us recommend music. We will also use the backend to

recommend the next song(s) to the user. This can either be ML or a predictive algorithm (as

stated above). The approach the team took for predicting the next songs was the predictive

algorithm. The team has implemented an application that uses Spotify’s API to play music. The

sddec20-13 14

past months have involved learning, developing, and testing to ensure the app meets this

proposed approach.

 2.1.1 Sensor Inputs
Pictured below is a list of sensor inputs and the results for each of these. More

specifically, these are APIs or frameworks the team will use to gather the inputs. Using

these APIs or frameworks, we will be able to gather the result needed. For example, the

app will be able to use the Core Location API in order to obtain the location, movement,

etc. of the user.

Inputs (API/Framework) Result

Core Location Location, Movement

Healthkit/Core Motion (Didn’t get to this) Steps, Heart Rate, Movement, Date of

Birth

IO Kit (Didn’t get to this) Bluetooth Connectivity

Core Motion (Didn’t get to this) Start Date, End Date, Number of steps,

Distance, etc.

IOBluetooth UI (Didn’t get to this) Bluetooth Connectivity

CarPlay (Didn’t get to this) Bluetooth Connectivity to car

Asset Playback (Didn’t get to this) Control Volume

Google API (Didn’t get to this) Schedule/Calendar, Sign-In

Spotify Return Songs, connection status, etc.

Open Weather API (Didn’t get to this) Temperature, Wind Speed, Cloudiness

Percentage, etc.

Dates and Times Date and Time

Figure 3: Sensor Input Table

2.1.2 Database Design
Below is a diagram of our database design. As you can see, we will use the User table to

store user information. Originally, the team was planning on using Google authentication

which would help with storing passwords. However, since the team did not go that route,

we needed to store passwords. We will store hashed email addresses as well as the age of

the user. The team planned to store the region the user resides in. However, the team did

not end up adding this information. Next, we have the UserSettings table which is where

we store the values for the personalized UserSettings such as if they would like to enable

or disable location services and other information. Volume control is another setting that

the team did not implement for the app. Each User will have many bins. To model this

sddec20-13 15

one-to-many relationship, we have the Bin table. Each Bin will have a user associated

with it. The bin will be defined by the various sensor inputs that we have discussed so we

have a field for each of these inputs. Similar to the user-bin relationship, each bin will

have many songs, however, different bins may share the same song, therefore this is a

many-to-many relationship. To represent this, we have created a Songs table, where each

SongName will be associated with a bin. The primary key here ensures no duplicate

values. The revised database design is shown in Figure 5.

 Figure 4: Database Design

Figure 5: Revised Database Design

2.1.3 Onboarding Diagram
When a user first logs in to his/her account, we will take them through an initial process

to get their recommendation system setup. This diagram shows our onboarding process

for each user. First, they will log in to Spotify and simply choose a song from their own

library or any song on Spotify they’d like to listen to at that moment. As one can see, a

Google sign-in was planned for the application. However, the user does not need to sign

sddec20-13 16

in to Google anymore. From that particular song, their feature vector will be derived from

their current sensor inputs. The combination of these will create their first bin with this

song in it and a feature vector to describe the bin. We will then give similar song

recommendations from their library or Spotify based on the song metadata. The user will

give feedback on these recommendations which will help us decide whether to keep

adding these songs to the same bin or create new bins if the user wants to differentiate

any particular song.

Also, please note that the revised Onboarding Diagram is Figure 7.

Figure 6: Onboarding Diagram

sddec20-13 17

 Figure 7: Revised Onboarding Diagram

2.1.4 Feature Vector Workflow
Once our user is onboarded, in order to choose songs accurately the next time they use

the application, we will use this feature vector workflow method. First, we will receive

all of the sensor inputs in their respective format and send them to our backend lambda

function. This lambda function will uniquely check whether this feature in the vector

corresponds to any specific existing feature in another bin. Depending on the correlation,

we will give a priority weight to each feature that was checked and these weights will be

passed to another lambda which will decide which feature is most relevant based on the

weighting. The highest correlating feature will decide which bin we choose songs from at

that moment.

Also, please note that Figure 9 displays the new Feature Vector Workflow. This includes

a point system where the calendar location and calendar name will return 0 points if it is a

match. Otherwise, if there is not a match, it will return 20 points. For day, if both days are

weekdays, then the bin selection algorithm will return 0 points. Otherwise, if one of the

days is a weekend day, then the algorithm will return 10 points. For time, we use the

following formula: score = (difference in hours)*2. For location (distance in meters) we

use the following formula: score = distance/10, up to 16. The bin with the lowest score is

chosen.

sddec20-13 18

 Figure 8: Feature Vector Workflow

Figure 9: Revised Feature Vector Workflow

sddec20-13 19

2.1.5 Feedback Diagram

Another important part of our recommendation system is the feedback process. The

diagram below highlights our feedback process flow. First, our feedback page will ask

the user if they like the current song first. If they like the song then it will keep playing

and be added to the bin if it doesn’t already exist there. If they respond no, we will

change the song to another one in that bin and increase a counter. If the user responds no

to 3 songs in a row, we know that type of music doesn’t belong in that bin and they need

a change. We will then run our backend function to find the next best bin and play a song

from that bin. The entire process continues cyclically.

Figure 10: Feedback Diagram

2.2 Design Analysis

There are multiple modules that our application will need to function. We start with the User.

The User will be responsible for providing feedback on our music predictions as well as

sddec20-13 20

inputting their music preferences. The application will then take in the user feedback to send to

our processing components as well as storing local API logins. The application will then send the

user’s sensor data to our AWS Cloud functions to predict the next song that should be played for

the user. Once that prediction is complete it will then call Spotify API to request a song and load

that into the queue to be played. We will store the user’s liked and disliked songs in our AWS

database.

As far as the analysis of this design goes, a strength of this app includes limited inputs from the

user. This is the goal of the app. Additionally, this is what our client (Dr. Duwe) would like to

see. The design will allow the team to create an app that requires little input from the user. As

long as the user has the app running, the app will not require too much action. The team does not

believe there is a weakness in this design. With Dr. Duwe’s help, the team feels as if it

constructed a robust design.

2.3 Development Process

During the SE 491 course, the team followed a Waterfall method. The team completed the

Planning & Requirements stage and the System & Software development design stage. This

helped the team gain a high-level perspective on the project. During the Fall 2020 semester, the

team adopted an Agile approach towards the project. This approach allows the team to

implement continuous client feedback into our application. Throughout the semester, the team

continuously developed, tested, and received feedback from Dr. Duwe. For example, the team

would spend a week developing. Then, the team would use unit testing, UI testing, Postman, real

data, etc. to test the changes before merging to the master branch. After developing and testing,

each week, the team would bring the status of the part the team was working on to Dr. Duwe.

2.4 Conceptual Sketch

Our System-level diagram contains multiple modules that will deliver the necessary

requirements. My (Musical) Life will consist of 5 modules. Local Storage, AWS Database, AWS

Cloud Processing, Third-party API, and User Feedback. The application is designed to take

minimal user input and provide a nice automated experience. To do so there will be a minimal

user interface. The user will input password and login credentials that will be stored locally on

the device. This data will be used to access their third-party accounts such as their calendar. As

mentioned previously, the team did not have time to use Google’s API. Therefore, the team went

with the iPhone’s calendar. The local storage data will also be used to deliver an audio streaming

service. Our largest requirement is to predict what type of sounds the user wants to listen to and

deliver it. Part of this processing will be done on Amazon web services. We are storing detailed

user models in the database to build a personalized profile for each user. This will serve as a key

factor when we try to predict the user's sounds. To minimize the amount of on-device processing

we will utilize AWS cloud functions to perform more of the heavy-duty computation in

prediction.

sddec20-13 21

Figure 11: Conceptual Sketch

sddec20-13 22

Figure 12: iOS Mockup

Our application will consist of a simple UI to encourage an autonomous feel to the experience.

We will gather feedback from our users about their listening experience through the like and

dislike buttons. Pictured above (Figure 12), was a rough sketch of what the team was envisioning

the app to look like. The team went with a slightly different approach. The team has

implemented a “Thumbs Up” and “Thumbs Down” feature for the app.

sddec20-13 23

3. Statement of Work

3.1 Previous Work And Literature

As for previous work that has been done, there are apps that have been created that do something

similar to the app we plan on making. However, our app will be different than the three that we

will mention.

First, there is an app by the name of MusicFit. The goal of this app is to generate music based on

the user’s body movements through the iPhone’s sensors [3]. Ultimately, this app will generate

music based on the user’s change of pace while working out. The app will only generate music

based on four genres (techno, electro, idm, chill) [3]. My (Musical) Life will be different because

our app will generate music based on a couple of factors (calendar, time of day, weather,

connectivity, location, etc.). Our app will predict what type of music the user would like to listen

to based on those factors. Additionally, our app will not be limited to only four genres.

Next, another similar application that exists is Musicovery. For this app, “recommendations of

tracks, artists, genres, and playlists are personalized in real-time to each listener, according to his

music preferences, listening behavior, and listening history” [2]. Again, this is different from My

(Musical) Life since our app will generate music based on different factors. Furthermore,

Musicovery seemed to have been an app at some point, but now it is only a website. We could

not find it in the app store.

Lastly, the last application that seemed to be similar to our project is Songza. Songza would use

date, time, and past listening history to generate “playlists based on predictions about the user’s

mood and/or activity at the time” [1]. However, this app would allow the user to also search for

playlists based on genres, mood, and artists. This is a feature that My (Musical) Life will not

have. Adding on, the app was shut down, but it was integrated into Google Play Music. The

difference between My (Musical) Life and Songza (now integrated into Google Play Music) is the

fact that My (Musical) Life is planned to be an app with minimal to no user input. The app is

planned to be extremely simple to use for the user. Furthermore, Songza had the ability to ask the

user what he/she is doing [4]. My (Musical) Life will be different because, with the help of

Google APIs, My (Musical) Life will have access to the user’s calendar. The app will know what

the user is doing at a specific time of the day. Overall, Songza seems to have the most similar

idea to My (Musical) Life, but with the plan of making our app play music based on location,

connectivity, weather, movement, number of steps, etc., My (Musical) Life will be different than

Songza since Songza does not use more factors other than the date, time, and past listening

history.

3.2 Technology Considerations

● Spotify API

○ Strengths: Spotify has tutorials and many webpages on how to integrate their API

into an app.

○ Weaknesses: Each member of the team has not had much experience using

Spotify’s API. Therefore, there will be a learning curve.

sddec20-13 24

● AWS

○ Strengths: AWS seems to be simple to use and integrated into an app. There are

many tutorials that can be followed to use AWS.

○ Weaknesses: Some members of the team do not have experience with using

AWS

● Google API

○ Strengths: There are many tutorials one can follow with Google API.

Additionally, this API seems to be relatively simple to integrate into an app.

○ Weaknesses: Experience with using Google API.

○ **Note: Google API is something the team did not end up using for the

application.

● iOS

○ Strengths: There are many nice tools to use while developing iOS applications.

Apple provides some tutorials for iOS development as well.

○ Weaknesses: Apple has many restrictions on iOS apps. There are many

guidelines we must follow. Also, one out of the five team members has

experience with iOS development.

3.3 Task Decomposition

 Tasks for the project:

● Research/Learning APIs

○ All team members need to learn APIs needed for the project.

○ This involved lots of research into different APIs and libraries the team can use.

● Swift User Interfaces

○ Only one member (out of 5) is experienced in iOS development. Thus, each team

member needed to learn Swift and become more comfortable with the language.

● Spotify API

○ Vatsal worked on using and setting up Spotify for the app.

○ Vatsal had to research how to set up Spotify and use it correctly for the app.

● AlamoFire

○ This was research by the team. However, this is something the team did not end

up using for the app.

● AWS

○ Throughout the Spring 2020 semester, all team members researched libraries and

APIs needed for the project.

○ This was used a lot for connecting to the backend and setting up the backend.

○ Vatsal, Vignesh, and Daksh primarily worked on using AWS and setting up the

backend.

sddec20-13 25

■ All three handled Lambda functions for the frontend and backend.

○ Chaz and Christian helped a little with this as well.

● Setting up a database to store data

○ This task was taken on by Daksh. Daksh was able to successfully set up the

backend and the database.

● Setting up frontend

○ Vignesh, Vatsal, Chaz, and Christian all helped with the frontend.

● Sign Up and Login Functionality

○ The app needs functionality for a user to sign up and log in to the app. Chaz will

be focusing on this portion of the app.

● Obtaining User Data

○ The application needs to obtain user data, such as calendar and location. This will

be done by Chaz.

● UI Development

○ This involves making the application appealing to the user. Also, this involves

making the application user-friendly. This will be worked on by all team

members.

● Creation of Application Icon

○ This will be completed by Vignesh. The app icon is what a user will see on

his/her iPhone home page.

● Google APIs

○ Google APIs were not used for this project due to time constraints.

● Testing

○ Christian took on researching and setting up the testing part of this project.

○ This involved learning how to develop UI and unit testing in Swift.

○ Additionally, this involved researching and using iOSSnapshotTestCase.

○ Testing was also done using Postman. This was used by Vignesh and Daksh.

● Bin Selection Algorithm

○ Daksh was the leader of this task. Daksh took on the ranking of the bins and

implementing the algorithm.

○ All the team members helped a little with the creation of the bin selection

algorithm.

3.4 Possible Risks And Risk Management

As we develop the app, there will be multiple issues that we will run into. The first issue is the

user not having a Spotify Premium account. This may make it difficult to access all types of

music for the user. Although we may not be able to provide the same experience for non-

sddec20-13 26

premium users, we will be able to work with the Spotify API in order to still access songs and

playlists to recommend to our users.

Next, trying to figure out an algorithm to select which bin needs to be selected or if a bin needs

to be created will be a challenge. This algorithm can be somewhat subjective which adds to the

challenge. However, even if we are not able to come up with a perfect solution, the rest of the

application will still have its intended functionality as we will still be able to recommend songs

for the users.

Developing an iOS app will create some roadblocks for the team. Apple has many restrictions

and guidelines one must follow. Creating an app in iOS rather than Android is a bit more

difficult. Only one out of the five team members is familiar with iOS development. Thus, there

will be a learning curve for the four other team members.

Obtaining user data, such as accessing the user’s calendar, location, etc. may be a difficult task

for the team. There may be some restrictions on the amount of data we can receive from each

user.

3.5 Project Proposed Milestones and Evaluation Criteria

The first milestone that needs to be completed is, by the end of May 2020, the team plans on

having parts of the app completed. That includes the setup of AWS, the setup of the front-end

and back-end, setup of the database, and our app should be able to connect to Spotify.

Additionally, the team should have a repo setup as well. There are not many evaluation criteria

needed to complete this milestone. As long as some basic parts of the app are created, that will

be sufficient. As for testing, the team should ensure that the separate parts of the app are

somewhat functional.

The second milestone is the frontend and backend connecting. This was set to be completed by

the beginning of the fall semester. The goal was to have both ends fully communicating. For

example, a user should be able to sign in and have its details stored in the backend. Testing

should include running the app on a simulator or an actual device and checking the backend to

see if the inputs on the frontend are successfully making it to the backend.

The third milestone is AWS API Gateway. This involves being able to develop APIs that will be

able to effectively communicate with the backend and frontend. This will also help with the

creation of the lambda functions and setting up lambda function triggers. Testing will consist of

using the simulator for testing and Postman.

The fourth milestone is integrating Spotify. This milestone will include connecting Spotify with

the app. The app should be able to use Spotify to play music. Basic functionality, such as stop,

play, change song, etc., should be evident. Thus, testing will include testing the team’s app on an

actual device.

The fifth milestone is the bin selection algorithm. This algorithm should correctly identify the

bin needed to play for the user based on sensor data. This is a complex algorithm that will take

time. The algorithm needs to correctly identify bins, rank bins, and weigh the sensor data

sddec20-13 27

correctly. The best way to test this algorithm is with real data and testing the algorithm while the

app is running. Another great way to test the app is to load the app on the iPhone, and actually

have the app running. This will determine if the bin selection algorithm is correctly choosing

songs.

Overall, the most important milestone for the team is to have a fully functional app by November

2020. The evaluation criteria for this milestone is an app that is meeting all of its functional and

non-functional requirements. Additionally, this app needs to be able to satisfy the client. That is

Dr. Duwe. Testing involves unit and UI unit testing. Additionally, testing with real data and on

an actual device is the best way to go to ensure that the user will have a great experience.

3.6 Project Tracking Procedures

The group will use GitLab to track progress throughout the course of this and next semester.

GitLab has a section called “Issues” where one can add issues to an “Issues Board.” Thus, this is

the project management tool the team will use throughout the duration of the project.

Additionally, the team will be tracking progress by meeting some basic code requirements. That

is passing the unit tests and a fully functional app before pushing the changes. The team will also

discuss code changes before pushing to the master branch. Throughout the semester, the team

would have mini code reviews.

3.7 Expected Results and Validation

The desired outcome is to have a fully functional app by November 2020. My (Musical) Life app

will be in the app store free for users to use. The application will predict the user’s mood based

on many factors and generate music based on that mood. Additionally, the application will be

bug-free.

The plan was to confirm the application will work at a high level by running an extensive list of

tests (System Tests, Unit Tests, Stress Tests, Regression Tests, etc). The team implemented unit

tests to test the app. Another way of testing the app was by running the app on an actual iPhone.

Additionally, the team decided to use real data to test the app. Additionally, the app must satisfy

our client (Dr. Duwe) and other potential users.

sddec20-13 28

4. Project Timeline, Estimated Resources, and Challenges

 4.1 Project Timeline

This section will include the initial Gantt Chart the team created during the Spring 2020

semester. The first Gantt chart’s description was modified to represent what the team did

accomplish and did not accomplish on the chart. The second Gantt chart reveals the actual length

of time that it took to complete tasks.

Figure 13: Gantt Chart of Project Timeline (Spring 2020)

The Gantt chart above shows some of the short term and long term goals that we had for this

project. We moved out of the phase that primarily consists of design and development towards

the end of the Spring 2020 semester. However, there were some core pieces we wanted to cover

towards the end of May. First, we wanted to finish setting up AWS for our app. Next, setting up

a basic frontend was on track to be completed by the end of May. The goal was for the app to not

consist of many pages, but the initial set up of the frontend was projected to take a while. These

tasks were projected to be finished by end of May. However, due to the team’s quick transition

to internships, the team didn’t start tackling these tasks until the Fall 2020 semester. Going

forward, the plan was to set up Google authentication for the app. Thus, this would involve

having the users logging into his/her Google account via the app. This was another task that was

on track to be completed by the end of May. Unfortunately, this is something that the team

decided to leave as a future task. The team implemented a simple sign-up and login without

Google’s API. Additionally, the app needed to connect to Spotify and use Spotify. Thus,

connecting to Spotify’s API is something else the team has accomplished. As mentioned, users

will need a Spotify account. Setting up the database is another task that the team worked on.

Setting up the database can be difficult and take a while to accomplish. Thus, this was projected

to take 70 days or more to complete. The backend team was able to begin and finish setting up

the database in the early part of the Fall 2020 semester. As one can see, this does not reflect what

the Gantt chart displays above. Furthermore, research and learning were projected to take longer

sddec20-13 29

as we discovered new technologies and software to potentially use during the development

process.

We would also like to mention that, by the fall semester, the team planned on collecting data for

the development of the app. The team planned to use the data for development. However, some

of the data were collected towards the end of the Fall 2020 semester to test the bin selection

algorithm. The team did go through a cycle of developing, testing, and receiving feedback from

our client/adviser throughout the semester. To be more specific, the team began working on

front-end calls to Spotify’s API in order to play songs. Also, the team began making the front-

end calls to lambda functions. Both of these tasks did not take about 20 days to complete, as

originally mentioned. This took more than 20 days. Adding on, the fall semester did involve

constructing and finishing the front-end UI of the app as well. This did not take 40 days to

complete, as previously mentioned. Constructing the frontend UI took the entire semester to

complete. Therefore, around 75 days. Two other tasks the team planned on completing were

creating lambda functions and setting up lambda function triggers. This did take about 40 days to

complete. By November, the hope was to make the finishing touches.

Figure 14: Revised Gantt Chart

As one can see, the Gantt chart needed to be modified a bit. This is due to the Coronavirus

Pandemic. The time given to complete this project has been shortened tremendously. The team

was able to have a final product towards the end of the semester.

What this second Gantt chart displays is a more accurate overview of how the Spring 2020 and

the Fall 2020 semester went. The team did reach its goal in the “Finishing and Complete Final

Product” task. This was meant to ultimately put finishing touches to the app. Next, the “Bin

Selection Algorithm,” maybe the most complex portion of the app, took most of October to

complete. Given its complexity, the bin selection algorithm took a while to implement the

design. “Spotify Integration and Development” was an addition added to the Gantt chart. This is

sddec20-13 30

another major component of the app that took a while to complete. Some challenges occurred

along the way, but the team was successfully able to get the app and Spotify’s API to

communicate. Next, “AWS Secrets Manager” was another addition added to the Gantt chart.

This was one of the first tasks that were taken on by the backend team early in the semester. This

only took about 25 days to complete. “UI and Unit Testing” is another new addition. Testing

began at the beginning of the semester and took the entire semester. As new changes came in,

new tests needed to be developed. Next, “Front End Calls to Spotify API” to play songs is an

area of the Gantt chart that needed to be modified. Originally, this was projected to take

approximately less than 2 weeks to complete. However, this ended up taking about 60 days to

complete. “Front-End Calls to Lamda Functions” did not change from the previous Gantt chart.

As mentioned above, “Construct Front-End UI” needed to be modified to reflect the actual time

it took. This took about 75 days to complete. “Creating Lamda Functions and Set Up Lamda

Function Triggers” did not change. This did take the amount of time that was projected.

“Developing and Receiving Feedback” task had a name change. This did take the entire

semester, as projected. However, we removed the word “testing” out of the task name and made

“Testing” into “UI and Unit Testing.” Next, “Collecting Data” section was modified, as

mentioned above. This section didn’t begin until October. Collecting data was used to test the

bin selection algorithm, but the development of the algorithm began at the beginning of October.

The basic setup of AWS, the basic setup of the front-end, getting a connection to Spotify’s API,

database development, and research and learning tasks all did go on as projected. The only task

listed that the team did not get to during the Fall semester is setting up Google authentication.

4.2 Feasibility Assessment

Overall, the expectation of this project is to be an iOS app that our client (Dr. Duwe) will be able

to download and use. By the end of the Fall semester (November 2020), the goal is for the app to

be fully functional with regards to requirements. The application should also meet the

expectations of our client, Dr. Duwe.

As for challenges the team ran into, the team ran into challenges using new technologies we do

not have experience with. Thus, we had to allocate time for learning new technologies. Another

challenge is time. We are given less than a year to create this app; therefore, given our class

schedules and other obligations, this has been a challenge. Additionally, the Coronavirus

Pandemic has impacted the project as well. The pandemic has resulted in a shorter time frame to

complete the project.

Lastly, for 4 out of the 5 members of the team have never developed an iOS application before. 2

members have not had much experience with AWS as well. Given that the majority of the team

are new to iOS development, developing this project within this time frame has been

challenging.

4.3 Personnel Effort Requirements

sddec20-13 31

Task Description Projected Effort and Time

Research/Learning of APIs,

Swift User Interfaces, Spotify

API, AlamoFire, AWS,

Machine Learning, etc.

This task simply includes

research and learning any new

technologies needed for the

project.

This takes quite a bit of effort.

Most likely a month is a good

timeframe for this task. This

took about 60 days to

complete.

Create a database to store data

locally and in the cloud

 A database to store

information locally and in the

cloud. Currently, data is

stored in both places

Setting up databases can be

difficult and confusing.

Ultimately, a month will be

enough time to set up a fully

functional database.

App(Frontend) connects to

APIs (Google API, Spotify

API, Third-Party APIs)

After the research/learning

phase, we would like to begin

to connect to these APIs. That

is, we need to integrate some

of these APIs into our app and

learn how to use them.

This should about two weeks

to accomplish. With the right

training and tutorials, this can

be done in a short time frame.

The team did not implement

Google’s API.

Use Lambda functions in

AWS to update DB

Write push, pull function to

update and read our database

This should take about 2-3

weeks depending on how

many tables we use.

Connect backend to Spotify

API

The backend needs to query

/recommendations endpoint in

order to get the next song(s)

This should take about one

week. However, building the

logic for recommendation

may take about a month

Implement Google login The frontend will use Google

to authenticate users. This

was a task that the team did

not get to.

This should take about 2

weeks. However, it should be

noted that this is now

considered to be a future task

AWS Secrets Manager Used for security for the app. Given the team has a couple

of experienced users with

AWS, this should not take

much effort. This is projected

to take 2 weeks.

AWS API Gateway REST

API

Used for connection between

the backend and frontend.

This will be done by Vignesh.

Vignesh has experience with

this task. There will still be

lots of effort to get this to

work properly. This is

projected to take about 2-3

sddec20-13 32

weeks. To complete.

iOS Sign Up The front-end needs

functionality for a user to sign

up. This will consist of an

email address, password, and

age.

The team does have an iOS

expert (Chaz), therefore, this

will help a lot. However,

passwords and emails must be

kept secure. So, this will take

a lot of effort. For the sign-up

to work correctly, this should

take about a month.

iOS Login There must be login

functionality for the user so

that the user can log in to

his/her account. Passwords

should be secure.

The team does have an iOS

expert (Chaz), therefore, this

will help a lot. However,

passwords and emails must be

kept secure. So, this will take

a lot of effort. For the login to

work correctly, this should

take about a month.

iOS UI The UI should look neat and

creative. Also, the UI should

be organized and user-

friendly. The application will

have multiple pages, and the

flow to and from pages

should work correctly.

This should not be too

difficult to design. Given that

4 out of the 5 members have

never developed in Swift

before, this may take a little

more time than expected. This

is expected to take about a

month and a half to complete.

User Data for iOS User data, such as the user’s

calendar and location, is

needed for the bin selection

algorithm.

This will be a difficult task.

Chaz, our lead iOS developer,

will be taking charge of this.

This will take about 3 weeks

to complete.

Bin Selection Workflow A bin selection workflow is

needed. For example, user

data will be needed to be sent

to the backend to add as

inputs for the bin selection

algorithm.

This will be a difficult task to

complete. The bin selection

algorithm is a difficult task as

well. So, creating this

workflow may take time. We

are projecting this to take

about 2-3 weeks to complete.

Spotify Integration The app should have full

communication with Spotify

given that this is the music

streaming service the team

Given that the team does not

have much experience with

using Spotify for iOS

development, this will take a

sddec20-13 33

went forward with using.

Based on the user’s sensor

data, the bin selection

algorithm will determine

which type of genre for the

user. Spotify is the streaming

service that will play the

music.

while and lots of effort to

complete. The project

timeline for Spotify to work

correctly in the app is 2-3

months.

Testing (UI and Unit Tests) The involves all testing

required for the project. The

team plans on writing unit

tests and UI tests. The team

will be using frameworks,

such as

iOSSnapshotTestCase, to help

with testing.

This should take a couple a

couple of weeks for the setup.

After, the implementation and

design of the tests typically

take multiple months to

complete. As more code goes

is pushed, more tests need to

be written.

Bin Selection Algorithm Based on sensor data inputs,

this algorithm will determine

the best bin to play for the

user.

This is a rigorous task that

needs a lot of effort.

Developing an algorithm that

correctly identifies the best

music to play for a user is

difficult. Thus, this is

estimated to take 3 to 4

months to design and

develop.

Creation of App Icon Ultimately, this is the “Face

of the App.” This is what the

user will see on the iPhone’s

homepage.

This will take some effort

given that most of the team

does not have experience in

this. Vignesh is taking on this

task, and it should take about

5 days to accomplish.

4.4 Other Resource Requirements

The project has a few resource requirements in order to function.

Device: Since we have chosen to utilize the newest Swift frameworks available our app needs to

be running on an Apple device that is running iOS 13 or higher.

Accounts: A Spotify account will be required to use the app in order to enable streaming data to

the user.

sddec20-13 34

Cellular Data or Wifi: A constant connection will need to be enabled in order for the program to

function.

4.5 Financial Requirements

 Currently, the only requirement is a Spotify Premium account. Previously, the team felt as if the

free Spotify account would have been sufficient for the application. However, after much

development, it was realized that the user must have a Spotify Premium account. Each team

member does have a Spotify Premium account. Thus, this did not cost any team member money.

Overall, a total of $0 was needed for this project.

4.6 Coronavirus Impact

The Coronavirus Pandemic has impacted the outcome and process of the team’s project. Face to

face interaction has decreased dramatically. Everything has to be done remotely for the team

given the danger of the virus. This has negatively impacted the team as the team can not engage

in any communication that involves face to face interaction. This will not allow us to build closer

relationships with each other outside of the project.

Additionally, the Coronavirus Pandemic has affected the project timeline as well. Originally, the

project was projected to be completed by early December. This would be in time for the team’s

final IRP presentation and demo. However, the pandemic has forced Iowa State to make the

decision to shorten the semester by a couple of weeks. Therefore, this causes the team to have to

work at a faster rate and some features may not be completed in time.

Next, testing will be impacted. One of the features of the app is the bin selection algorithm that

will determine the song that needs to be played based on the user’s location. Given the

Coronavirus restrictions throughout the country, the team will not be able to fully test this feature

since there are places closed. For example, most gyms are closed.

sddec20-13 35

5. Testing and Implementation

5.1 Interface Specifications

The interface should respond to user requests and obtain user data. The team will be using

Apple’s built-in UI testing to ensure UIkit components are responsive.

Additionally, the user should have the best experience possible. This includes a UI that is simple

to understand and use. The UI should not provide any challenges to the user. The user should be

able to easily navigate the app.

5.2 Hardware and Software

● Testflight

○ This allows us to distribute our iOS builds among our testers without submitting a

build to the app store

○ Note: Given the shortened semester, the team did not have the ability to reach the

point to use Testflight.

● PostMan

○ This will allow us to send and retrieve data to our custom-built APIs providing us

a detailed view of our JSON packets

5.3 Functional Testing

To ensure the application is fully functional we will be performing various forms of integration

testing.

XCTest & XCUITest – Apple’s built-in testing software suite. This is what we will be using to

test the iOS portion of the application.

● API Integration

○ Third-party APIs will be a big component in our application to meet our

deliverables. Testing of these APIs will be done utilizing PostMan and Black box

testing

● Music Integration

○ Volume and audio testing will take place to ensure that music is delivered

consistently and on-demand

○ This has to be tested on an actual device since Spotify will not work on the

simulator

● Sign up / Sign In

○ Authentication testing will ensure users will have profiles with saved

personalized models.

○ Sign Up / Sign In Testing will be tested using the simulator and an iPhone.

● Bin Selection Algorithm

sddec20-13 36

○ To test the bin creation algorithm, we will be conducting user testing on the

developers on the team. The plan is to collect data on recommendation

satisfaction and record the progress of this satisfaction as time continues.

However, the way the team went on to test the app was by testing on an actual

device and using real data.

○ Another way the team tested this algorithm is by actually using the app to

determine if the bin was selected or not.

5.4 Non-Functional Testing

Once the app is developed, we will perform some performance, usability, security, and

compatibility tests.

● Authentication Testing

○ Authentication testing was the plan for the team. However, due to time, the team

was unable to get to this task. This is left to be a future task

● Memory Leak Testing

○ Memory leak testing was the plan for the team. The team was unable to get to

writing memory leak tests. However, the team was able to view and make sure

that memory was not an issue while running the app. In XCode, the user must

click on the icon that says, “Show the debug navigator,” as seen in figure 15

Figure 15: The “Show Debug Navigator” Icon

○ Then, one will be able to view the CPU percentage used, memory used,

reads/writes for the disk, and network information.

○ Figure 16 displays the app’s memory usage

sddec20-13 37

Figure 16: Memory Use of App

● Performance Testing

○ This is something that the team was unable to get to. However, the performance

was measured based on testing the app consistently throughout the semester. For

example, did a new change slow down the app? Is a user able to quickly switch

between pages? Is there any issue with the music playing or not playing correctly?

● UI Testing

○ iOSSnapshotTestCase is used to help test the UI along with the existing XCTest

framework provided by Apple.

○ UI testing was done by creating multiple test cases using the XCTest framework.

One can either record the tests or write the tests. The team recommends writing

the test by hand given that errors can occur while trying to record the tests.

Asserts can be used to ensure that some item exists. For example the following

line of code

XCTAssertTrue(XCUIApplication().secureTextFields["pwSignUp"].exists)

ensures that that the password secure text field does indeed exist on the signup

page.

○ iOSSnapshotTestCase is a framework provided by Uber. What this framework

does is record the screen and takes a screenshot. This screenshot will be used as a

reference image. Then, after running the test again with recording set to off, the

test will compare the new screenshot taken of the screen with its reference image

[8]. This framework will always be used to take screenshots. However, when

sddec20-13 38

recording is on, the screenshot will be used as a reference image. Another piece to

note is that when recording is on, the tests will always fail. That is normal and

okay.

■ Additionally, this framework allows the person to create the tests to store

the reference images and failed images in a specific location. The tutorial

given to set up this framework is very helpful.

■ Here is an example of what this test framework can do:

● Figure 17: Reference Image

● Figure 18: Failed Image

● Figure 19: Image Differences

sddec20-13 39

● The reference image (Figure 17) is what the screen should look

like. The failed image (Figure 18) is what the image actually looks

like. Then, the last picture (Figure 19) displays where the

differences occurred.

5.5 Process

Each team member will be responsible to write their own test cases towards code they push to

the project. This will help lower the exposure to bugs and complications that the app will have.

We will be using various tools in Xcode and Amazon Web Services.

Overall, for testing, the team will have a validation lead. This individual will oversee most of the

testing for all features of the app. Given the short timeframe for the project, the validation lead

will be responsible for developing as many test cases as possible.

Currently, the process includes the following:

1. Developers write and perform basic testing before pushing to master

2. Christian develops unit and UI tests to test new changes that went into master

a. Tests changes locally

3. Pushes to master

sddec20-13 40

Figure 20: Testing Flowchart

5.6 Results

sddec20-13 41

The results demonstrate that the application is reliable and secure. It delivers the functional

deliverables (besides weather and volume control) as specified. Testing ensures that our

application will be a great experience.

Below (Figure 21), one can tell that the app has successfully passed all of the unit tests and the

UI tests. The UI tests made more sense here given that one can test what the users see.

Additionally, the UI tests ensure that the flow of the screens is correct. For example, when a user

clicks the login button, the user should be taken to the login screen.

Figure 21: Unit tests and UI tests results

Another set of results the team would like to show are the results of the bin selection algorithm.

sddec20-13 42

Figure 22: Bin Selection Algorithm Results

sddec20-13 43

Current Feature Vector: Calendar: Study, Calendar Location: Empty, Day: Thursday, Time:

14:00, and Lat, Lon: 42.027663, -93.649007

Figure 23: Bin Scoring for Current Feature Vector Bar Graph

Above, Figure 22 displays that the bin selection algorithm is working as expected. A lower score

means that the bin is closer to the “Curr” bin. For example, take the example with Bin A and

Curr. The result is a score of 20.2. This was accomplished by a ranking system implemented by

Daksh for the bin selection algorithm. Both Curr and Bin A have an exact match for the Calendar

event and Day. One might ask, “Why are days considered to be the same?” Well, this is because

the system is based on weekdays and weekends. If both days are days in a week, then it is

considered a match. So, the result is 0 points for those categories. Calendar Location, time, and

location are a little different. However, the differences are small. As one can see, Bin B and Bin

C have high scores. Any time that a score is above 50, then a new bin is created.

Figure 23 is a bar graph representation of the results from the bin selection algorithm results.

This graph does not include the current bin. The purpose of this graph is to display a visual

representation of how the algorithm works. First, it should be noted that the orange line is the

“New Bin Boundary.” Additionally, please note that the current bin has a feature vector with the

following data points: Calendar: Study, Calendar Location: Empty, Day: Thursday, Time:

14:00, and Lat, Lon: 42.027663, -93.649007. If the bins points are above that line, then the

algorithm will generate a new bin. As one can see, Bin A is the bin that produces the closest

sddec20-13 44

score to the current bin. That is because the score is the lowest and it is below the orange line.

There will be a new bin created for Bin B and Bin C since the score is above the “New Bin

Boundary.” This is because Bin B and Bin C data points from their feature vectors are not close

enough to the data points in the current bin.

Figure 24: Bin Selection Algorithm Results 2

sddec20-13 45

Current Feature Vector: Calendar: Workout, Calendar Location: State Gym, Day: Tuesday,

Time: 18:30, and Lat, Lon: 42.024511, -93.653978

Figure 25: Bin Scoring for Current Feature Vector 2

Above, Figure 24 and 25 are another round of tests that the team ran to test the bin selection

algorithm. As one can see, according to Figure 25, Bin B is now the bin that is closest to the

current bin. The feature vector for the current bin is as follows: Calendar: Workout, Calendar

Location: State Gym, Day: Tuesday, Time: 18:30, and Lat, Lon: 42.024511, -93.653978. This

current feature vector can be viewed on top of Figure 24. Figure 24 is the diagram that is

comparing the current feature vector with bin A, bin B, and bin C. Additionally, according to

Figure 25, there will be new bins that need to be created for Bin A and Bin C since both bins

exceed the “New Bin Boundary.” Overall, these two figures display another case with the

feature vector data points.

sddec20-13 46

6. Closing Material

6.1 Conclusion

In conclusion, the planning phase included an abundance of research and learning. Our research

consisted of tools and technologies the team can potentially use for this app. After a semester

spent developing and testing, the team has produced a well-tested app that meets the majority of

its initial requirements. Throughout the Fall 2020 semester, the team worked closely with its

adviser/client (Dr. Duwe) to ensure that the app is meeting his requirements. Overall, the goal

was to create an app that was fully-functional by November 2020. Also, the goal was to have the

team’s adviser/client (Dr. Duwe) to be satisfied with the final product. Therefore, the team

followed the tasks and advice given by Dr. Duwe in order to stay on track throughout the

semester.

6.2 References

[1] J. Crook, “Google Will Shut Down Songza App, Songza.com To Fold Into Google Play

Music,” TechCrunch, 02-Dec-2015. [Online]. Available:

https://techcrunch.com/2015/12/02/google-will-shut-down-songza-app-songza-com-to-

fold-into-google-play-music/. [Accessed: 24-Feb-2020].

[2] “Musicovery B2B,” Musicovery B2B. [Online]. Available: http://b2b.musicovery.com/.

[Accessed: 24-Feb-2020].

[3] “MusicFit,” App Store, 02-Jan-2018. [Online]. Available:

https://apps.apple.com/us/app/musicfit/id1186085097. [Accessed: 24-Feb-2020].

[4] E. Van Buskirk, “Songza’s Concierge Picks Free Music for Specific Situations (Now for

iPad),” evolver.fm, 05-Mar-2012. [Online]. Available:

http://evolver.fm/2012/03/05/songzas-new-concierge-picks-free-music-for-your-specific-

situation/. [Accessed: 24-Apr-2020].

[5]“iOS App Testing Tutorial: Manual & Automation,” Guru99, 24-Mar-2020. [Online].

Available: https://www.guru99.com/getting-started-with-ios-testing.html. [Accessed: 25-

Apr-2020].

[6] Guo, Bingkun, “iOS Security” WUSTL, 1-Dec-2014. [Online]. Available:

https://www.cse.wustl.edu/~jain/cse571-14/ftp/ios_security/index.html. [Accessed: 25-

Apr-2020].

[7] “16 Metrics to ensure mobile app success” App Dynamics, 2015. [Online] Available:

https://www.appdynamics.com/media/uploaded-files/1432066155/white-paper-16-

metrics-every-mobile-team-should-monitor.pdf. [Accessed 26-April-2020].

[8] “iOSSnapshotTestCase (previously FBSnapshotTestCase),” GitHub. [Online]. Available:

https://github.com/uber/ios-snapshot-test-case. [Accessed: 09-Nov-2020].

sddec20-13 47

Appendix I: Operation Manual
1. Please install Spotify if you don’t have Spotify installed.

2. Download the app from the app store. Currently, the app is not in the app store. Therefore,

the way that we are doing this is by installing the application from our computer.

3. If you receive a prompt asking for location permission, please select an option. For the best

experience, choose “Allow Once” or “Allow While Using App.”

3. If you are a new user, please sign up. Otherwise, log in to your existing account.

Figure 26: Sign Up or Log In Page

4. Sign Up will include entering in an email address, password, and age. Log In will only include

 adding an email address and a password.

sddec20-13 48

Figure 27: Log In Figure 28: Sign Up

5. After logging in or signing up, if you received a prompt asking for permission to your calendar

 data, please choose an option. You may always update your options by navigating to the

 Settings page as shown below.

Figure 29: Home Page (Settings Circled) Figure 30: Settings Page

6. If you are ready to listen to music, please click the “Player” icon at the bottom of the screen.

sddec20-13 49

Figure 31: Home Page (Spotify Player Circled)

7. Then, connect to Spotify using your credentials!

sddec20-13 50

Figure 32: Spotify Player Page

8. Once connected, you can use the “Thumbs Up” or “Thumbs Down” button when songs are

playing. A “Thumbs Up” means that you like the song. “Thumbs Down” means you do not like

the song.

	1 Introduction
	1.1 Acknowledgement
	1.2 Problem and Project Statement
	1.3 Operational Environment
	1.5 Intended Users and Uses

	2. Specifications and Analysis
	2.1 Proposed Approach
	2.2 Design Analysis
	2.3 Development Process
	2.4 Conceptual Sketch

	3. Statement of Work
	3.1 Previous Work And Literature
	3.2 Technology Considerations
	3.3 Task Decomposition
	3.4 Possible Risks And Risk Management
	3.5 Project Proposed Milestones and Evaluation Criteria
	3.7 Expected Results and Validation

	4. Project Timeline, Estimated Resources, and Challenges
	4.1 Project Timeline
	4.2 Feasibility Assessment
	4.3 Personnel Effort Requirements
	4.4 Other Resource Requirements
	4.5 Financial Requirements
	4.6 Coronavirus Impact
	5.1 Interface Specifications
	5.2 Hardware and Software
	5.4 Non-Functional Testing

	6. Closing Material
	6.1 Conclusion
	6.2 References

	Appendix I: Operation Manual

